
Converting (Large)
Applications to OSGi™
BJ Hargrave, Senior Technical Staff Member at IBM

Peter Kriens, Technical Director, OSGi

TS-5122

2008 JavaOneSM Conference | java.com.sun/javaone | 2

Learn How to Simplify Application Development
by Building for the OSGi Service Platform

And have fun doing it!

2008 JavaOneSM Conference | java.com.sun/javaone | 3

Agenda

Modularization

Modularization in Java™ Apps

The OSGi™ Framework

Legacy Code

Dynamic Class Loading

Designing with Services

Building

Pitfalls

Conclusion

2008 JavaOneSM Conference | java.com.sun/javaone | 4

Modularization

Recycling old ideas that were
raised in the early seventies by, among
others, David Parnas:
• High Cohesion

• Low Coupling

Modularization minimizes
complexity by creating proper boundaries
between the parts that compose a system

Properly modularized systems are easier to
maintain and extend
• Changes are more localized and affect less of the overall system

2008 JavaOneSM Conference | java.com.sun/javaone | 5

What happened with Modularization and
Object Oriented (OO)?

2008 JavaOneSM Conference | java.com.sun/javaone | 5

What happened with Modularization and
Object Oriented (OO)?

2008 JavaOneSM Conference | java.com.sun/javaone | 6

by Damoiselle de Pique

2008 JavaOneSM Conference | java.com.sun/javaone | 6

by Damoiselle de Pique

Was Pollock
an Early OO
Programmer?

2008 JavaOneSM Conference | java.com.sun/javaone | 7

What happened with Modularization and OO?

Focus in OO was on encapsulation of instance variables,
which is some form of modularization, but granularity is
too small

OO systems become tangled webs quickly
• Program knows its own structure

Patterns like SOA, Factories, Dependency Injection,
Inversion of Control are trying to minimize the
consequences of OO and its lack of modularization

2008 JavaOneSM Conference | java.com.sun/javaone | 8

Agenda

Modularization

Modularization in Java™ Apps

The OSGi Framework

Legacy Code

Dynamic Class Loading

Designing with Services

Building

Pitfalls

Conclusion

2008 JavaOneSM Conference | java.com.sun/javaone | 8

Agenda

Modularization

Modularization in Java™ Apps

The OSGi Framework

Legacy Code

Dynamic Class Loading

Designing with Services

Building

Pitfalls

Conclusion

2008 JavaOneSM Conference | java.com.sun/javaone | 9

Modularization in Java Apps
Visibility

Java Platform Modularity
• Classes encapsulate data

• Packages contain classes

• Jars contain packages

Visibility Access
• private, package private, protected,

public

Packages look hierarchical, but are not

Jars have no modularization
characteristics

Jar

Package

Class
Class

Class

Package

Class
Class

Class

Package

Class
Class

Class

2008 JavaOneSM Conference | java.com.sun/javaone |

Modularization in Java Apps
Classpath

10

Java VM

log4j

barcode4j

axis

batik

commons

derby

fop

ezmorph

freemarker

httpunit

jakarta

jcl

json

jdbm

jdom

jenks

jpos18

jython

looks

lucene

mail

mx4j

naming

jetty

poi

resolver

rome

serializer

servlets

tomcat

velocity

ws-commons

xalan

wsdl4j

xerces

xmlgraphics

xmlrpc

xmlapis

..

geronimo

bsh

bsf

guiapp

hhfacility

manufact.

marketing

minerva

accounting

assetmaint

base

bi

catalina

common

oagis

order

ebay

content

datafile

ecommerce

entity

googlebase

ofbiz

widget

minilang

party

pos.

product

workeffort

workflow

…

sunjce_prov.

plugin

jsse

jce

rt

dnsns

..

…

Begin
Here

2008 JavaOneSM Conference | java.com.sun/javaone |

Modularization in Java Apps
Classpath

10

Java VM

log4j

barcode4j

axis

batik

commons

derby

fop

ezmorph

freemarker

httpunit

jakarta

jcl

json

jdbm

jdom

jenks

jpos18

jython

looks

lucene

mail

mx4j

naming

jetty

poi

resolver

rome

serializer

servlets

tomcat

velocity

ws-commons

xalan

wsdl4j

xerces

xmlgraphics

xmlrpc

xmlapis

..

geronimo

bsh

bsf

guiapp

hhfacility

manufact.

marketing

minerva

accounting

assetmaint

base

bi

catalina

common

oagis

order

ebay

content

datafile

ecommerce

entity

googlebase

ofbiz

widget

minilang

party

pos.

product

workeffort

workflow

…

sunjce_prov.

plugin

jsse

jce

rt

dnsns

..

…

Class
Not

Found
Exception

Begin
Here

2008 JavaOneSM Conference | java.com.sun/javaone | 11

Modularization in Java Apps
Issues

Granularity of classes and packages is too small for real
world applications

Jars provide packaging, can not be used to restrict access
• Every public class is visible to every other class

Severe problems like split packages
• Multiple jars have classes in the same package

• Often unintended

No versioning support
• Order on CLASSPATH define chosen version

• Single version of a class in the VM

Has no proper extension/collaboration model

2008 JavaOneSM Conference | java.com.sun/javaone | 12

Agenda

Modularization

Modularization in Java™ Apps

The OSGi Framework

Legacy Code

Dynamic Class Loading

Designing with Services

Building

Pitfalls

Conclusion

2008 JavaOneSM Conference | java.com.sun/javaone | 13

The OSGi Framework
Overview

The OSGi Service Platform
specifies a modular
architecture for dynamic
component based systems
• Execution Environment

• Module Layer

• Life Cycle Layer

• Service Layer

• Security

Introduces Bundles as
modules

OS + Hardware

Java Execution Env

Module

Life Cycle

Services

S
E
C
U
R
I
T
Y

Applications
(bundles)

2008 JavaOneSM Conference | java.com.sun/javaone |

The OSGi Framework
Networked Class Loaders on “Steroids”

14

System
Loader

Extension
Loader

App A
Loader

Custom
Loader

2008 JavaOneSM Conference | java.com.sun/javaone |

The OSGi Framework
Networked Class Loaders on “Steroids”

14

System
Loader

Extension
Loader

App A
Loader

Custom
Loader

Bundle G

Bundle C

Bundle A

Bundle B

Bundle F

Bundle E

Bundle D

OSGiOSGi
Framework

2008 JavaOneSM Conference | java.com.sun/javaone |

The OSGi Framework
Features

Class loading dispatch based on package name
• Prevents many problems with split packages
• Faster class loading for large systems

Allows multiple versions of the same class in one VM
• Class spaces

Jars can contain exported packages or Jar private packages
Bundle == Jar
• Manifest contains metadata

Services provide a collaborative in-VM SOA model
• No invocation overhead
• Full Life Cycle Model

15

2008 JavaOneSM Conference | java.com.sun/javaone | 16

Agenda

Modularization

Java Platform Modularization

The OSGi Framework

Legacy Code

Dynamic Class Loading

Designing with Services

Building

Pitfalls

Conclusion Thomas Picard

2008 JavaOneSM Conference | java.com.sun/javaone |

Legacy Code

17

... legacy code is a challenge. Many developers say
things like: “My code is very modular”, or “My code
doesn’t depend on very much”, or “No one uses any of
my classes except from the Foo package”

Unless they are already using OSGi, they are wrong.
Until modularity is enforced, it is not there.

John Wells, BEA

2008 JavaOneSM Conference | java.com.sun/javaone |

Legacy Code
Wrapping Libraries

Analyzing what you have
• What are the dependencies between the Jars that make up your

applications

OSGi bundles need manifest headers
• Exported packages,
• Imported Packages,
• Optionality,
• Versions,
• Bundle identity
• ...

18

2008 JavaOneSM Conference | java.com.sun/javaone |

Legacy Code
Wrapping Libraries

Several open source projects provide OSGi metadata:
• Apache (Derby, Struts, Felix, etc)
• All Eclipse code
• Codehaus Groovy

Repositories are coming online:
• OSGi Bundle Repository (OBR)
• Apache Felix Commons
• Eclipse Orbit
• Maven is increasingly OSGi aware (see Maven Bundle plugin)
• SpringSource Enterprise Bundle Repository

When this fails: bnd utility
• OSGi bundle analyze and build tool ...

19

Legacy Code
Strategy?

2008 JavaOneSM Conference | java.com.sun/javaone | 20

How do You Eat an
Elephant?

Legacy Code
Strategy?

2008 JavaOneSM Conference | java.com.sun/javaone | 20

Legacy Code
Strategy?

How do You Eat an
Elephant?

Legacy Code
Strategy?

2008 JavaOneSM Conference | java.com.sun/javaone | 20

One Bite at a Time!

Legacy Code
Strategy?

2008 JavaOneSM Conference | java.com.sun/javaone |

Legacy Code
Convert Existing Code

Make a project with your application and all its dependent
jars
• Include all libraries on the classpath

Create a bundle activator that calls main
Include all libraries into one bundle
• Super sized!
• Use bnd

Having a working bundle (whatever the size) is a good
baseline and allows for gradually replacing the dependent
jars with bundles
• Keep it working!

21

2008 JavaOneSM Conference | java.com.sun/javaone |

Legacy Code
Converting Existing Code

22

Bundle

Service

2008 JavaOneSM Conference | java.com.sun/javaone |

Legacy Code
Converting Existing Code

22

Bundle

Service

2008 JavaOneSM Conference | java.com.sun/javaone |

Legacy Code
Converting Existing Code

23

Bundle

Service

2008 JavaOneSM Conference | java.com.sun/javaone |

Legacy Code
Converting Existing Code

24

Bundle

Service

2008 JavaOneSM Conference | java.com.sun/javaone |

Legacy Code
Breaking out Bundles

For each dependent jar in the project, call it x.jar
• If there is an existing bundleized version of that jar
• use that one

• Otherwise
• Create a new bundle project corresponding only to x.jar file.
• Find the Java source files for x.jar in the old projects and move them

into the new source folder.

The new application bundle project has no more jar
libraries or source in it.

25

2008 JavaOneSM Conference | java.com.sun/javaone |

Legacy Code
Application Models

Raw OSGi APIs are powerful but not always easy to use
Best practices is to write POJOs (Plain Old Java Objects) that
are not coupled to a framework
There are many such application models for OSGi:
• Spring-DM (formerly called Spring-OSGi)
• Apache iPOJO
• Service Application Toolkit
• OSGi Declarative Services

Pick one of these application models after you got your
existing application running
Convert the application part-by-part

26

2008 JavaOneSM Conference | java.com.sun/javaone |

Legacy Code
To Include or to Refer? That is the Question!

When to refer to a library?
• External API
• Implementations can differ
• E.g. javax.naming,

javax.transaction

• Very large library
• Reduces size because of sharing

When to include a library in the
bundle?
• Pure functions
• Small
• Reduces number of dependencies
• High Cohesion

27

bundles
co

m
pl

ex
it

y

2008 JavaOneSM Conference | java.com.sun/javaone |

Legacy Code
Use case: Hibernate

28

> bnd print -impexp hibernate3.jar

antlr.… com.mchange.v2.c3p0

com.opensymphony.oscache.… javassist.…

javax.naming.… javax.security.…

javax.sql javax.transaction.…

net.sf.cglib.… net.sf.ehcache

net.sf.swarmcache org.apache.commons.…

org.apache.tools.ant.… org.dom4j.…

org.jboss.cache.… org.logicalcobwebs.proxool.…

org.objectweb.asm.… org.w3c.dom

org.xml.sax

2008 JavaOneSM Conference | java.com.sun/javaone |

Legacy Code
Create org.hibernate.bnd File

29

-classpath: hibernate3.jar, \

 lib/antlr-2.7.6.jar, \

 lib/asm-attrs.jar, \

 lib/asm.jar, \

 lib/cglib-2.1.3.jar, \

 lib/commons-collections-2.1.1.jar, \

 lib/commons-logging-1.0.4.jar, \

 lib/dom4j-1.6.1.jar, \

 lib/log4j-1.2.11.jar, \

 lib/jta.jar

2008 JavaOneSM Conference | java.com.sun/javaone |

Legacy Code
Wrapping Hibernate

Minimize dependencies!
• Managing dependencies is good!
• Not having dependencies is best!

Let bnd do:
• Copy all packages on the classpath
• Import the missing packages

Only export the hibernate packages and the
javax.transaction packages from jta.jar
Other libraries should be kept private
This is a first guess, when we start to use hibernate, we
might learn that we want to export more packages

30

2008 JavaOneSM Conference | java.com.sun/javaone |

Legacy Code
Next version of bnd file: org.hibernate.bnd

31

-classpath: hibernate3.jar, \

 lib/antlr-2.7.6.jar, \

 lib/asm-attrs.jar, \

 lib/asm.jar, \

 lib/cglib-2.1.3.jar, \

 lib/commons-collections-2.1.1.jar, \

 lib/commons-logging-1.0.4.jar, \

 lib/dom4j-1.6.1.jar, \

 lib/log4j-1.2.11.jar, \

 lib/jta.jar

Private-Package: *

Export-Package: javax.transaction.*, \

 org.hibernate.*

2008 JavaOneSM Conference | java.com.sun/javaone |

Legacy Code
View imported packages

32

> bnd org.hibernate.bnd

> bnd print -impexp org.hibernate.jar

com.mchange.v2.c3p0 com.opensymphony.oscache…

com.sun.jdmk.comm com.sun.msv.datatype…

javassist… javax.jms

javax.mail… javax.management

javax.naming… javax.security…

javax.sql javax.swing…

javax.xml… net.sf.ehcache

net.sf.swarmcache org.apache.avalon.framework.logger

org.apache.log org.apache.tools.ant…

org.codehaus.aspectwerkz.hook org.gjt.xpp

org.jaxen… org.jboss.cache…

org.logicalcobwebs.proxool… org.objectweb.asm.util

org.relaxng.datatype org.w3c.dom

org.xml.sax…

2008 JavaOneSM Conference | java.com.sun/javaone |

Legacy Code
Wrapping Hibernate

There are many packages which are obviously not
mandatory.
• org.apache.avalon.framework.logger
• org.apache.tools.ant

These are glue dependencies. They are only needed when
running inside some “framework”
There are also optional features that should not be
required by hibernate
• for example javax.mail?

A shortcut is to make all our imports optional
• Detects problems in runtime
• With more time and knowledge, it is possible to make this less

coarse grained
33

2008 JavaOneSM Conference | java.com.sun/javaone |

Legacy Code
Next version bnd file org.hibernate.bnd

34

-classpath: hibernate3.jar, \

 lib/antlr-2.7.6.jar, \

 lib/asm-attrs.jar, \

 lib/asm.jar, \

 lib/cglib-2.1.3.jar, \

 lib/commons-collections-2.1.1.jar, \

 lib/commons-logging-1.0.4.jar, \

 lib/dom4j-1.6.1.jar, \

 lib/log4j-1.2.11.jar, \

 lib/jta.jar

Private-Package: *

Import-Package: javax.xml.*, javax.sql.*, \

 *;resolution:=optional

Export-Package: javax.transaction.*,org.hibernate.*

2008 JavaOneSM Conference | java.com.sun/javaone | 35

Agenda

Modularization

Modularization in Java™ Apps

The OSGi Framework

Legacy Code

Dynamic Class Loading

Designing with Services

Building

Pitfalls

Conclusion

2008 JavaOneSM Conference | java.com.sun/javaone |

Dynamic Class Loading

A surprising number of applications created their own
unique plugin mechanisms using dynamic class loading
• Configuration provided by strings
• Class.forName during runtime

Ignores modularity …
• Class name strings never, ever, handle versions

Class.forName has a bug that prevents it from handling
these issues correctly
• At least, use ClassLoader.loadClass

36

2008 JavaOneSM Conference | java.com.sun/javaone |

Dynamic Class Loading

Context Class loader tends to revert back to “best effort”
linear search
• Eclipse supports “Buddy Class Loading” (Containerism!)
• OSGi next specification will address the use cases for Buddy Class

Loading

Recommendations
• Try to remove all class loading code. Is it really necessary?
• Convert plugin mechanisms to services because it handles versions

and compatibility issues
• If not possible, use ClassLoader methods, not Class.forName

Relax, let go of your class loaders, really OSGi does it
better :-)

37

2008 JavaOneSM Conference | java.com.sun/javaone | 38

Agenda

Modularization

Modularization in Java™ Apps

The OSGi Framework

Legacy Code

Dynamic Class Loading

Designing with Services

Building

Pitfalls

Conclusion

One big issue for good component and service oriented
architectures is how to achieve loose coupling between
components by design. As architects we are looking for
minimization of dependencies and maximization of flexibility,
preparing a system for future change. The OSGi framework is a
great foundation for this endeavor, …

 Dieter Wimberger

2008 JavaOneSM Conference | java.com.sun/javaone |

Designing with Services

39

2008 JavaOneSM Conference | java.com.sun/javaone |

Designing with Services
Goals

Services provide a very loose coupling between modules
• Allows modules to be substituted

Services are used as input/output ports, they should be the
only links between bundles
Key is to find connections between modules and map them
to services
• Initially, this is not always obvious so do not go overboard

Try to use standard services (OSGi)
Try to use standard interfaces (Java application
environment, …)
Try to establish in-house standards

40

2008 JavaOneSM Conference | java.com.sun/javaone |

Designing with Services
Service Concepts

41

get register

listen

service

bundle

AA AB

AC

2008 JavaOneSM Conference | java.com.sun/javaone | 42

2008 JavaOneSM Conference | java.com.sun/javaone | 42

2008 JavaOneSM Conference | java.com.sun/javaone | 43

Agenda

Modularization

Modularization in Java™ Apps

The OSGi Framework

Legacy Code

Dynamic Class Loading

Designing with Services

Building

Pitfalls

Conclusion

2008 JavaOneSM Conference | java.com.sun/javaone |

Building

Your Build system is probably the largest productivity
multiplier in your organization
Eclipse is an excellent IDE for OSGi development
• PDE - Plugin Development Environment, Pax-Runner, JDT + Bnd

But bundles can also be built with Netbeans™ software or
other IDEs
Offline build is different, PDE build is not very easy to run
offline
Build Systems
• Maven + Bundle Plugin (from Apache Felix, based on bnd)
• Ant + bnd

44

2008 JavaOneSM Conference | java.com.sun/javaone | 45

Agenda

Modularization

Modularization in Java™ Apps

The OSGi Framework

Legacy Code

Dynamic Class Loading

Designing with Services

Building

Pitfalls

Conclusion

2008 JavaOneSM Conference | java.com.sun/javaone |

Pitfalls

Too much at once
• Get the complete application to work on OSGi, modularize a part,

test, and iterate in small increments
• Eat the elephant one bite at a time

Dynamic Class Loading
• Most of the time custom class loaders are abused in applications,

get rid of them
• Watch out for the usage of Class.forName
• Use Services

46

2008 JavaOneSM Conference | java.com.sun/javaone |

Pitfalls

Framework Implementation Dependencies
• “Containerisms”
• Be careful to use OSGi only features and not become dependent on

a specific OSGi implementation
• Almost all problems can be properly solved using the OSGi

capabilities
• In rare cases, it is necessary to escape to an implementation

dependent feature, e.g. Buddy loading

47

2008 JavaOneSM Conference | java.com.sun/javaone | 48

Agenda

Modularization

Java Platform Modularization

The OSGi Framework

Legacy Code

Dynamic Class Loading

Designing with Services

Building

Pitfalls

Conclusion

2008 JavaOneSM Conference | java.com.sun/javaone |

Conclusion

49

2008 JavaOneSM Conference | java.com.sun/javaone |

Conclusion

49

To this day team members still come up to me occasionally to
thank me for introducing OSGi, often after being reminded what
things were like by having to go back to an old release build. I
wish I could take credit but the truth is I never anticipated most
of these benefits until I started the conversion.

Bill Kayser, Software Architect StepZero LLC

2008 JavaOneSM Conference | java.com.sun/javaone |

References

OSGi Alliance
• http://www.osgi.org

bnd
• http://www.aQute.biz/Code/Bnd

Bill Kayser’s blog about converting to OSGi
• http://blogs.nagarro.net/kayser/osgi-from-here-to-there-part-ii

Bundleizing Hibernate
• http://www.aqute.biz/Code/BndHibernate

BEA The Good, the Bad, and the Ugly
• http://www.parleys.com/display/PARLEYS/OSGi,+the+good+the+bad

+the+ugly

Dieter Wimberger Blog
• http://www.blogger.com/profile/01341177121570488166

50

http://www.parleys.com/display/PARLEYS/OSGi,+the+good+the+bad+the+ugly
http://www.aQute.biz/Code/Bnd
http://www.aQute.biz/Code/Bnd
http://blogs.nagarro.net/kayser/osgi-from-here-to-there-part-ii
http://blogs.nagarro.net/kayser/osgi-from-here-to-there-part-ii
http://www.aqute.biz/Code/BndHibernate
http://www.aqute.biz/Code/BndHibernate
http://www.parleys.com/display/PARLEYS/OSGi,+the+good+the+bad+the+ugly
http://www.parleys.com/display/PARLEYS/OSGi,+the+good+the+bad+the+ugly
http://www.parleys.com/display/PARLEYS/OSGi,+the+good+the+bad+the+ugly
http://www.parleys.com/display/PARLEYS/OSGi,+the+good+the+bad+the+ugly
http://www.parleys.com/display/PARLEYS/OSGi,+the+good+the+bad+the+ugly

Join us in Berlin, June 10-11, 2008
for the 2008 OSGi Community Event!

